Tagged: zooplankton

Downfall of a Phylum? The negative effects of ocean acidification and ocean temperature rise on foraminifera populations

J. Sicheri \ Oceans First, Issue 2, 2015, pgs. 42-49.

Download PDF

Abstract:

Ocean acidification and rising ocean temperatures both pose threats to many marine organisms’ physiology and habitats. This paper will establish whether or not these factors have a negative impact on populations of foraminifera, an important type of zooplankton, and if so, to what severity? In addition, this paper promotes the need for more research into the effects of acidification and warming on marine life. While the predicted impacts in reviewed studies varied in severity, they all agreed that ocean acidification, and to a lesser extent ocean temperature rise, will negatively impact foraminifera. Most researchers also agreed that more research must be done to understand the full extent of the impacts of ocean acidification and ocean temperature rise on foraminifera. This paper concludes that the cumulative effect of climate change as a whole be more harmful to foraminifera than any individual factor. Research examining the combined impact of climate change factors such as ocean temperature rise and ocean acidification should be undertaken.

An acoustical analysis of the variability of the diel vertical migration of zooplankton in Saanich Inlet

H. Boddy \ Oceans First, Issue 1, 2014, pgs. 1-11.

Download PDF

Abstract:

The diel vertical migration of zooplankton exhibits variation due to a number of environmental factors. In this research, active sonar technology was used to remotely observe and map zooplankton behaviour in Saanich Inlet, off of Vancouver Island. A zooplankton acoustic profiler (ZAP) was placed 100m below the surface on the Venus Instrument Platform (VIP) where it continuously emitted ~300 microsecond pulses of 200 kHz frequency sound. The acoustic images from the ZAP were then used to attempt to understand zooplankton’s migratory trends. It was noted that daylight influenced migration length, temperature and oxygen affected zooplankton abundance, and the mixing of oceanic pycnoclines caused a uniform distribution of zooplankton with depth. Overall, the results from this study suggested that zooplankton migrations vary as a result of multiple environmental factors, but further study is needed to understand the implications of these results.